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Abstract—In image processing, for denoising an image, wavelet 
thresholding (shrinkage) is one of the main techniques. In this work, 
we have denoised a Magnetic Resonance Image (MRI) using wavelet 
thresholding.  MRIs are quite effective tool for diagnosis in medical 
world and its maximum possible denoising for better diagnosis is 
always a call of time. We have used three different methods for 
thresholding: separable 2-D discrete wavelet transform (DST), real 
2-D dual-tree DWT (DTDWT), and complex dual tree 2-D DWT. 
Random noises in the images have been considered and results have 
been compared. To have better insight, we have performed our 
analysis by varying threshold levels. Apart from discussing the merits 
and demerits of different techniques, RMS errors obtained from these 
techniques have also been compared. Out of these techniques, best 
results were obtained through complex 2-D dual tree DWT. 

1. INTRODUCTION 

One popular technique for image denoising is wavelet 
thresholding (or "shrinkage"). When we decompose data using 
the wavelet transform, we use filters that act as averaging 
filters, and others that produce details. Some of the resulting 
wavelet coefficients correspond to details in the data set (high 
frequency sub-bands). If the details are small, they might be 
omitted without substantially affecting the main features of the 
data set. The idea of thresholding is to set all high frequency 
sub-band coefficients that are less than a particular threshold 
to zero. These coefficients are used in an inverse wavelet 
transformation to reconstruct the data set [1]. Generally we 
can use three different methods to remove the noise from an 
image. These methods are using separable 2-D DWT, real 2-D 
dual-tree DWT, and complex 2-D dual-tree DWT. Infact, in 
medical field, various researchers use complex 2-D dual tree 
DWT alongwith other filters generally [2]. 

Classical discrete wavelet transform (DWT) provides a means 
of implementing a multiscale analysis, based on a critically 
sampled filter bank with perfect reconstruction [3]. However, 
questions arise regarding the good qualities or properties of 
the wavelets and the results obtained using these tools, the 
standard DWT suffers from the following problems described 
as below:    Shift sensitivity: it has been observed that DWT is 
seriously disadvantaged by the shift sensitivity that arises from 
down samples in the DWT implementation [4]. Poor 

directionality: an m-dimension transform (m>1) suffers poor 
directionality when the transform coefficients reveal only a 
few feature in the spatial domain. Absence of phase 
information: filtering the image with DWT increases its size 
and adds phase distortions; human visual system is sensitive to 
phase distortion [5]. Such DWT implementations cannot 
provide the local phase information. In other applications, and 
for certain types of images, it is necessary to think of other, 
more complex wavelets, who gives a good way , because the 
complex wavelets filters which can be made to suppress 
negative frequency components. As we shall see the CWT has 
improved shift-invariance and directional selectivity [5]. The 
discrete complex dual tree wavelet transform (DT-CWT) was 
introduced by N. Kingsburg around in 1990. This 
implementation uses consists in analyzing the signal by two 
different DWT trees, with filters chosen so that at the end, the 
signal returns with the approximate decomposition by an 
analytical wavelet. 

2-D Dual-Tree Wavelet Transform: One of the advantages of 
the dual-tree complex wavelet transform is that it can be used 
to implement 2D wavelet transforms that are more selective 
with respect to orientation than is the separable 2D DWT. 
There are two versions of the 2D dual-tree wavelet transform: 
the real 2-D dual-tree DWT is 2-times expansive, while the 
complex 2-D dual-tree DWT is 4-times expansive. Both types 
have wavelets oriented in six distinct directions. We describe 
the real version first. 

1. Real 2-D Dual-tree Wavelet Transform: The real 2-D dual-
tree DWT of an image x is implemented using two critically-
sampled separable 2-D DWTs in parallel. Then for each pair 
of subbands we take the sum and difference. 

2. Complex 2-D Dual-tree Wavelet Transform : The complex 
2-D dual-tree DWT also gives rise to wavelets in six distinct 
directions, however, in this case there are two wavelets in each 
direction as will be illustrated below. In each direction, one of 
the two wavelets can be interpreted as the real part of a 
complex-valued 2D wavelet, while the other wavelet can be 
interpreted as the imaginary part of a complex-valued 2D 
wavelet. Because the complex version has twice as many 
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wavelets as the real version of the transform, the complex 
version is 4-times expansive. The complex 2-D dual-tree is 
implemented as four critically-sampled separable 2-D DWTs 
operating in parallel. However, different filter sets are used 
along the rows and columns. As in the real case, the sum and 
difference of subband images is performed to obtain the 
oriented wavelets. 

2. METHODOLOGY 

All the computational work has been performed on MATLAB 
(2008) software. We have used an MRI image of the brain of a 
female patient and have introduced a random noise in it with 
variance 20. Then RMS errors (with respect to original image) 
have been calculated for different thresholds (0-60) with three 
different wavelet techniques viz separable 2-D discrete 
wavelet transform, real 2-D dual tree discrete wavelet 
transform, and complex 2-D dual tree discrete wavelet 
transform. These errors have been tabulated (Table – 1) and 
plotted on a graph (Figure – 1) for better understanding. The 
denoised images through these techniques have been shown 
with noised image to compare visually (Figure – 2a, 2b, 2c, 
and 2d). The various steps used in this soft thresholding are: 

A. Read an input image,  

B. Add noise to the input image and compute RMS error, C. 
Use filter bank for first stage and remaining stages,  

D. Set J (number of stages and T (threshold value),  

E. Compute forward DTCWT,  

F. Compute inverse DTCWT,  

G. Extract output image and compute RMS error. 

3. RESULTS AND CONCLUSIONS 

RMS errors of noisy, denoised by separable DWT, 2-D real 
and complex dual tree DWT have been calculated with respect 
to the original image and have been shown in table 1. The 
same have been plotted in Figure 1 and from table and figure 
it is clear that least value (and hence best value) of RMS error 
comes for the image which has been denoised by 2-D complex 
dual tree DWT at threshold value 20. Comparing Figures 2a, 
2b, 2c, and 2d make clear that the figure 2d which is denoised 
by 2-D complex dual tree DWT, is looking best and hence is 
the most usable.  

Table 1: Values of RMS error (with respect to original image) 
with varying T 

Threshold 
value (T) 

RMS error (decibal) w.r.t. original image 
Noisy 
image 

Separable 
DWT 

Real 2D 
DTDWT 

Complex 
2D 

DTDWT 

0 20.191 19.9503 20.0220 20.0345 
5 20.191 16.4779 15.1624 14.4497 
10 20.191 13.5972 11.3788 10.0345 
15 20.191 11.3558 8.9617 7.6580 
20 20.191 9.7770 7.8554 7.1757 
25 20.191 8.8340 7.6604 7.5567 
30 20.191 8.4248 7.9135 8.1244 
35 20.191 8.3970 8.3272 8.6802 
40 20.191 8.5934 8.3330 9.1939 
45 20.191 8.9039 9.2161 9.6655 
50 20.191 9.2579 9.6283 10.1043 
55 20.191 9.6192 10.0174 10.5149 
60 20.191 9.9719 10.3851 10.9007 

 
This makes us to conclude that the two dimensional dual tree 
complex discrete wavelet transform is best among the 
discussed denoising techniques. 

 

Figure 1: Plot of RMS error versus threshold values 

 

Figure 2a: Output of noisy image 
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Figure 2b: Output of denoised image by separable DWT 

 

Figure 2c: Output of denoised image by 2D real dual tree DWT 

 

Figure 2d: Output of denoised image by 2D complex dual tree 
DWT 
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